Statistics 3

Exercise 6C

$1 \mathrm{H}_{0}$: The observed data can be modelled by a discrete uniform distribution. (The dice is not biased.) H_{1} : The observed data cannot be modelled by a discrete uniform distribution. (The dice is biased.) The number of degrees of freedom $v=5$ (six data cells with a single constraint on the total) From the tables: $\chi_{5}^{2}(5 \%)=11.070$
$\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{4^{2}+1^{2}+1^{2}+3^{2}+4^{2}+3^{2}}{12}=4.333 \ldots$
As 4.333 is less than 11.070, there is not enough evidence to reject H_{0} at the 5% level and to suggest that the dice is not fair.
$3 \mathrm{H}_{0}$: The observed data is drawn from the travel agent's expected distribution.
H_{1} : The observed data is not drawn from the travel agent's distribution.
The number of degrees of freedom $v=2$ (three data cells with a single constraint on the total)
From the tables: $\chi_{2}^{2}(2.5 \%)=7.378$
$\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{6^{2}}{10}+\frac{13^{2}}{60}+\frac{7^{2}}{30}=8.05$
As 8.05 is greater than 7.378 , reject H_{0}; there is evidence at the 2.5% significance level that the expected distribution does not fit the data.

INTERNATIONAL A LEVEL

4 a The expected values in the final three data columns are all less than 5 , so these categories must be merged. The adjusted table has five columns $(0,1,2,3, \geqslant 4)$ with a single constraint on the total, and therefore there are four degrees of freedom.
b H_{0} : Data is drawn from the expected distribution.
H_{1} : Data is not drawn from the expected distribution.
From the tables: $\chi_{4}^{2}(5 \%)=9.488$
The observed and expected results are:

Dogs	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\geqslant \mathbf{4}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	45	19	11	8	17	100
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	55	20	10	7	8	100
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{i}\right)^{2}}{\boldsymbol{E}_{\boldsymbol{i}}}$	1.818	0.05	0.1	0.143	10.125	12.236

As 12.236 is greater than 9.488 , reject H_{0}; there is evidence at the 5% significance level that the expected distribution does not fit the data.
$5 \mathrm{H}_{0}$: Birth weights from 2000 can be used as a model for birth weights in 2015.
H_{1} : Birth weights from 2000 cannot be used as a model for birth weights in 2015.
The number of degrees of freedom $v=5$ (six data cells with a single constraint on the total) From the tables $\chi_{5}^{2}(5 \%)=11.070$

Calculate the expected results by multiplying the total number of observations (687660) by the percentage in each weight band in the year 2000. The observed and expected results are:

Weight (\mathbf{g})	$<\mathbf{1 5 0 0}$	$\mathbf{1 5 0 0} \mathbf{- 1 9 9 9}$	$\mathbf{2 0 0 0}-\mathbf{2 4 9 9}$	$\mathbf{2 5 0 0} \mathbf{- 2 9 9 9}$	$\mathbf{3 0 0 0}-\mathbf{3 4 9 9}$	$\geqslant \mathbf{3 5 0 0}$	Total
Observed $\left(\boldsymbol{O}_{\boldsymbol{i}}\right)$	7286	9304	32121	112535	244472	281942	687660
Expected $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$	8939.58	10314.9	34383	113464	245495	275064	687660
$\frac{\left(\boldsymbol{O}_{\boldsymbol{i}}-\boldsymbol{E}_{i}\right)^{2}}{\boldsymbol{E}_{\boldsymbol{i}}}$	305.9	99.1	148.8	7.6	4.3	172.0	737.6

As 737.6 is greater than 11.070 , reject H_{0}; there is evidence at the 5% significance level that distribution seen in the 2000 data does not provide a good model for the 2015 data.

