Statistics 3 Solution Bank

Exercise 6C

1 H₀: The observed data can be modelled by a discrete uniform distribution. (The dice is not biased.) H₁: The observed data cannot be modelled by a discrete uniform distribution. (The dice is biased.) The number of degrees of freedom v = 5 (six data cells with a single constraint on the total) From the tables: $\chi_5^2(5\%) = 11.070$

$$\sum \frac{\left(O_i - E_i\right)^2}{E_i} = \frac{4^2 + 1^2 + 1^2 + 3^2 + 4^2 + 3^2}{12} = 4.333...$$

As 4.333 is less than 11.070, there is not enough evidence to reject H_0 at the 5% level and to suggest that the dice is not fair.

3 H₀: The observed data is drawn from the travel agent's expected distribution. H₁: The observed data is not drawn from the travel agent's distribution.

The number of degrees of freedom v = 2 (three data cells with a single constraint on the total) From the tables: $\chi_2^2(2.5\%) = 7.378$

$$\sum \frac{\left(O_i - E_i\right)^2}{E_i} = \frac{6^2}{10} + \frac{13^2}{60} + \frac{7^2}{30} = 8.05$$

As 8.05 is greater than 7.378, reject H_0 ; there is evidence at the 2.5% significance level that the expected distribution does not fit the data.

Statistics 3 Solution Bank

- 4 a The expected values in the final three data columns are all less than 5, so these categories must be merged. The adjusted table has five columns (0, 1, 2, 3, ≥ 4) with a single constraint on the total, and therefore there are four degrees of freedom.
 - **b** H₀: Data is drawn from the expected distribution.H₁: Data is not drawn from the expected distribution.

From the tables: $\chi_4^2(5\%) = 9.488$

The observed and expected results are:

Dogs	0	1	2	3	≥ 4	Total
Observed (Oi)	45	19	11	8	17	100
Expected (E _i)	55	20	10	7	8	100
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	1.818	0.05	0.1	0.143	10.125	12.236

As 12.236 is greater than 9.488, reject H_0 ; there is evidence at the 5% significance level that the expected distribution does not fit the data.

5 H₀: Birth weights from 2000 can be used as a model for birth weights in 2015.
H₁: Birth weights from 2000 cannot be used as a model for birth weights in 2015.

The number of degrees of freedom v = 5 (six data cells with a single constraint on the total) From the tables $\chi_5^2(5\%) = 11.070$

Calculate the expected results by multiplying the total number of observations (687660) by the percentage in each weight band in the year 2000. The observed and expected results are:

Weight (g)	<1500	1500 - 1999	2000 - 2499	2500 - 2999	3000 - 3499	≥ 3500	Total
Observed (O _i)	7286	9304	32121	112535	244472	281942	687660
Expected (<i>E_i</i>)	8939.58	10314.9	34383	113464	245495	275064	687660
$\frac{\left(\boldsymbol{O}_{i}-\boldsymbol{E}_{i}\right)^{2}}{\boldsymbol{E}_{i}}$	305.9	99.1	148.8	7.6	4.3	172.0	737.6

As 737.6 is greater than 11.070, reject H_0 ; there is evidence at the 5% significance level that distribution seen in the 2000 data does not provide a good model for the 2015 data.